skip to main content


Search for: All records

Creators/Authors contains: "Ceron, Steven"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. At the microscale, coupled physical interactions between collectives of agents can be exploited to enable self-organization. Past systems typically consist of identical agents; however, heterogeneous agents can exhibit asymmetric pairwise interactions which can be used to generate more diverse patterns of self-organization. Here, we study the effect of size heterogeneity in microrobot collectives composed of circular, magnetic microdisks on a fluid–air interface. Each microrobot spins or oscillates about its center axis in response to an external oscillating magnetic field, in turn producing local magnetic, hydrodynamic, and capillary forces that enable diverse collective behaviors. We demonstrate through physical experiments and simulations that the heterogeneous collective can exploit the differences in microrobot size to enable programmable self-organization, density, morphology, and interaction with external passive objects. Specifically, we can control the level of self-organization by microrobot size, enable organized aggregation, dispersion, and locomotion, change the overall shape of the collective from circular to ellipse, and cage or expel objects. We characterize the fundamental self-organization behavior across a parameter space of magnetic field frequency, relative disk size, and relative populations; we replicate the behavior through a physical model and a swarming coupled oscillator model to show that the dominant effect stems from asymmetric interactions between the different-sized disks. Our work furthers insights into self-organization in heterogeneous microrobot collectives and moves us closer to the goal of applying such collectives to programmable self-assembly and active matter.

     
    more » « less
    Free, publicly-accessible full text available June 13, 2024
  2. Abstract

    We study the emergent behaviors of a population of swarming coupled oscillators, dubbed swarmalators. Previous work considered the simplest, idealized case: identical swarmalators with global coupling. Here we expand this work by adding more realistic features: local coupling, non-identical natural frequencies, and chirality. This more realistic model generates a variety of new behaviors including lattices of vortices, beating clusters, and interacting phase waves. Similar behaviors are found across natural and artificial micro-scale collective systems, including social slime mold, spermatozoa vortex arrays, and Quincke rollers. Our results indicate a wide range of future use cases, both to aid characterization and understanding of natural swarms, and to design complex interactions in collective systems from soft and active matter to micro-robotics.

     
    more » « less
  3. Abstract Mobile microrobots, which can navigate, sense, and interact with their environment, could potentially revolutionize biomedicine and environmental remediation. Many self-organizing microrobotic collectives have been developed to overcome inherent limits in actuation, sensing, and manipulation of individual microrobots; however, reconfigurable collectives with robust transitions between behaviors are rare. Such systems that perform multiple functions are advantageous to operate in complex environments. Here, we present a versatile microrobotic collective system capable of on-demand reconfiguration to adapt to and utilize their environments to perform various functions at the air–water interface. Our system exhibits diverse modes ranging from isotropic to anisotrpic behaviors and transitions between a globally driven and a novel self-propelling behavior. We show the transition between different modes in experiments and simulations, and demonstrate various functions, using the reconfigurability of our system to navigate, explore, and interact with the environment. Such versatile microrobot collectives with globally driven and self-propelled behaviors have great potential in future medical and environmental applications. 
    more » « less
  4. Soft robots actuate themselves and their world through induced pressure and strain, and can often sense these quantities as well. We hypothesize that coordination in a tightly coupled collective of soft robots can be achieved with purely proprioceptive sensing and no direct communication. In this paper, we target a platform of soft pneumatic modules capable of sensing strain on their perimeter, with the goal of using only the robots' own soft actuators and sensors as a medium for distributed coordination. However, methods for modelling, sensing, and controlling strain in such soft robot collectives are not well understood. To address this challenge, we introduce and validate a computationally efficient spring-based model for two-dimensional sheets of soft pneumatic robots. We then translate a classical consensus algorithm to use only proprioceptive data, test in simulation, and show that due to the physical coupling between robots we can achieve consensus-like coordination. We discuss the unique challenges of strain sensors and next steps to bringing these findings to hardware. These findings have promising potential for smart materials and large-scale collectives, because they omit the need for additional communication infrastructure to support coordination. 
    more » « less
  5.  
    more » « less